

A research
partnership between
Boise State University,
Idaho National
Laboratory, Idaho
State University and
University of Idaho.

Center for Advanced Energy Studies

Electrochemical Zirconium Recovery Experiments in Molten Salt System

Robert O. Hoover

Michael Shaltry

Supathorn Phongikaroon

Dept. of Chemical and Materials Engineering University of Idaho, Idaho Falls Michael F. Simpson

Pyroprocessing Technology

Idaho National Laboratory

August 28, 2012 2012 IPRC Fontana, WI

Outline

- Introduction
- Motivation and Goal
- Experimental Setup
- Experimental Procedures
- Summary & Future Work

Introduction

- The Experimental Breeder Reactor-II (EBR-II) was a metallic fueled, sodium cooled fast reactor operated at Argonne National Laboratory-West (currently Idaho National Laboratory) from 1963-1994.
- This reactor was fueled with a sodium-bonded, uranium-zirconium alloy fuel.

Element	Weight %1	Ion
U	80.596	III
Zr	10.805	IV
Na	2.160	I
Nd	0.930	III
Mo	0.771	III

- An electrochemical process was developed by Argonne
 National Laboratory to treat this stainless steel clad driver fuel.
- This electrochemical process is currently being used at Idaho National Laboratory to treat the used EBR-II driver fuel.

EBR-II Used Fuel Treatment Process

Mark-IV Electrorefiner (ER)

• Anode

- $U \rightarrow U^{3+} + 3e^{-}$
- $Arr Zr
 ightharpoonup Zr^{n+} + ne^-$

Cathode

- $U^{3+} + 3e^- \rightarrow U$
- $Arr Zr^{n+} + ne^- \rightarrow Zr$

University of Idaho Idaho Falls

Motivation and Goal

- Zirconium constitutes a large amount of the EBR-II used driver fuel at greater than 10 wt%.
- Over time, zirconium metal tends to build up within the Mark-IV ER and must periodically be removed.
- In developing a process to electrochemically recover pure zirconium, a knowledge of the Zr redox reactions that occur in the ER is necessary.
- To better understand this process, modeling is essential.
- In the electrochemical modeling process, there are several thermodynamic and electrochemical values that are required.
 - Standard Reduction Potential, E⁰
 - Diffusion Coefficient, D
 - Activity Coefficient, γ

Standard Reduction Potential

Nernst Equation:

$$E = E^{0} + \frac{RT}{nF} \ln(\gamma X_{s})$$

- E Equilibrium potential
- E⁰ Standard reduction potential
- R Ideal gas constant
- T Absolute temperature

- n Number of transferred electrons
- F Faraday's constant
- γ Activity coefficient
- X_s Mole fraction at interface
- What is the standard reduction potential, E^0 ?
 - The standard potential is the equilibrium potential, E, of a given reduction reaction (i.e. $Zr^{4+} + 4e^{-} \rightarrow Zr$) at standard conditions.
 - Pure substance at 1 atm pressure

$$-\gamma = 1$$
 and $X_s = 1$

• This is related to the Gibbs free energy change of the same half-cell reaction.

$$\Delta G^0 = -nFE^0$$

ΔG_i⁰ Gibbs energy change of reaction i

Diffusion Coefficient

Mass Transfer:

$$N = kA(C_s - C_{salt})$$

$$Sh = \frac{kd_e}{D} = 0.0791 \left(\frac{\omega d_e^2}{v}\right)^{0.7} \left(\frac{v}{D}\right)^{0.356}$$

- Molar mass transfer
- Mass transfer coefficient
- Total electrode surface area
- Surface concentration

- C_{salt} Bulk salt concentration
- Sherwood number
- Equivalent electrode diameter
- Electrode rotation rate
- Viscosity of salt

- What is the diffusion coefficient?
 - Proportionality constant between molar flux and concentration gradient.
 - Fick's 1st Law:

$$N = -D\nabla C$$

Follows the Arrhenius temperature dependence.

$$D = D_0 \exp\left(\frac{-\Delta H_D}{RT}\right)$$

 D_0 Pre-exponential factor ΔH_D Activation energy for diffusion

Available Literature Values

	Standard Reduction Potential, E ⁰ (V vs. Ag/AgCl)		Diffusion Coefficient, D (cm²/s)		Activity Coefficient, γ		
	Zr(IV)/Zr	Zr(IV)/Zr(II)	Zr(II)/Zr	Zr(IV)	Zr(II)	Zr(IV)	Zr(II)
[2]	-1.22*		-1.12			$9.6 \times 10^{-6*}$	3.4×10^{7}
[3]	-1.064*	-1.121*	-1.01*				
[4]	-0.838		-0.722			3.081×10^{-3} *	1.05×10^{-4}
[5]	-1.064*	-1.121*	-1.007*				
[6]	-1.333*						
[7]	-1.1						
[8]	-1.22						
[9]						4.48×10^{-3}	1.9×10^{-4}
[10]				1.13×10^{-5}			
[11]				$4.53 \times 10^{-6} - 1.10 \times 10^{-7}$			

^{*} Values reported are at 450 ° C.

^[2] R. Baboian, et al., J. Electrochem. Soc., 112.12 (1965).

^[3] J.A. Plambeck, J. of Chemical and Engineering Data, 12(1) (1967).

^[4] R. Ahluwalia, et al., Nucl. Tech., 126 (1999).

^[5] A.J. Bard, "Encyclopedia of Electrochemistry of the Elements, Vol. X, Fused Salt Systems, p. 68, Marcel Dekker, Inc., New York (1976).

^[6] M. Iizuka, et al., J. of Nuclear Materials, 297 (2001).

^[7] T. Murakami and T. Kato, J. Electrochem. Soc., 155(&) (2008).

^[8] A.V. Bychkov, *Proceedings of the Workshop on Pyrochemical Separations*, Avignon, France, March 14-16, 2000.

^[9] R.K. Ahluwalia, et al., Nucl. Tech., 133 (2001).

^[10] D. Yamada, et al., J. Alloys and Compounds, 444-445 (2007).

^[11] C.H. Lee, et al., J. Electrochem. Soc., **159(8)** (2012).

Experimental Setup

- (a) Al₂O₃ sheathed thermocoupleMonitored with Fluke 52II
- (b) Tungsten working electrode
- (c) Ag/AgCl reference electrode (5 mol%)
- (d) Glassy carbon counter electrode lead

- (e) Glassy carbon crucible/counter electrode
- (f) MgO secondary crucible
- (g) Eutectic LiCl/KCl salt containing ZrCl₄
- (h) Furnace
 - Kerrlab with graphite crucible

Procedures

- Loading LiCl/KCl eutectic and ZrCl₄
 - (1.0, 2.5, and 5.0) wt% ZrCl₄
 - LiCl/KCl eutectic, 44/56 wt% (Sigma-Aldrich, 99.99%)
 - ZrCl₄ (Alfa Aesar, Reactor Grade, 99.5+%)
- Heating salt at 4 °C/min to 500 °C (± 2) in the salt.
- Lowering electrodes into the molten salt.
 - Tungsten Working Electrode
 - d = 2.0 mm (Alfa Aesar, 99.95%)
 - Glassy Carbon Counter Electrode Lead
 - d = 3.0 mm (HTW-Germany)
 - Ag/AgCl Reference Electrode
 - Ag wire, d =1.0 mm diameter (Acros Organics, 99.9%)
 - 5 mol% AgCl in LiCl/KCl (Alfa Aesar, ultradry, 99.997%)

Electrochemistry

Cyclic Voltammetry

Scan range: 0 V to -2.4 V

• Scan rate: 300 mV/s to 2.0 V/s

Chronopotentiometry

Driving current: 70 mA to 300 mA

- Samples taken for ICP-MS analysis.
 - Mixed:
- Analysis Results:
- 1.0 wt%
- (0.954 ± 0.117) wt%
- 2.5 wt%
- (2.49 ± 0.304) wt%
- 5.0 wt%
- (4.84 ± 0.585) wt%

Chloride Salt Ingots

Cyclic Voltammetry (CV)

- A common electrochemical technique that can be used to determine the reactions that can occur in the electrochemical cell.
- Potential is scanned through the range of interest and current is measured.
 - Potential Range Scanned: 0 V to -2.4 V
 - Li⁺ Reduction: -2.561 V [12]
 - Cl⁻ Oxidation: +1.065 V [12]

Potential waveform for 100 mV/s.

- From the resulting current, reaction information can be determined.
 - Randles-Sevcik equation

$$\frac{I_p}{\sqrt{v}} = 0.446 nFAC \sqrt{\frac{n\alpha FD}{RT}}$$

Equilibrium potential

Apparent standard potential

$$\frac{I_p}{\sqrt{v}} = 0.4958 \text{nFAC} \sqrt{\frac{n\alpha FD}{RT}}$$

$$E = \frac{E_{p,a} + E_{p,c}}{2}$$

$$E = E^{0'} + \frac{RT}{nF} \ln(X)$$

Chronopotentiometry (CP)

- An electrochemical technique that can be used to determine the diffusion coefficient of ions within the electrolyte.
- A large driving current is applied and the resulting potential is measured.
 - To maintain the applied current, the potential drops to a value at which ions of a given species are reduced.
 - When the ion is fully reduced at the electrode surface the potential drops to a potential at which the next ion will reduce.
 - This creates a plateau in the measured potential.
 - The duration of this plateau, or transition time, τ , is related to diffusion coefficient, D, through the Sand equation.

$$i\sqrt{\tau} = \frac{nFC\sqrt{\pi D}}{2}$$

From the resulting potential response, transition time and diffusion can be determined.

Cyclic Voltammogram (1.0 wt% ZrCl₄)

1.0 wt% ZrCl₄

A
$$Zr^{4+} + 2e^{-} \rightarrow Zr^{2+}$$

$$B \quad Zr^{2+} + 2e^{-} \rightarrow Zr$$

$$Zr^{4+} + 3e^{-} \rightarrow Zr^{+}$$

$$C Zr^+ + e^- \rightarrow Zr$$

$$Zr^{4+} + 4e^- \rightarrow Zr$$

$$D \quad Zr^+ \to Zr^{4+} + 3e^{-}$$

$$Zr \rightarrow Zr^{2+} + 2e^{-}$$

Dools	Diffusion Coefficient, D (cm²/s)					
Peak	n = 1	n = 2	n = 3	n = 4		
A	9.26×10^{-5}	1.16×10^{-5}	3.43×10^{-6}	1.45×10^{-6}		
В	1.50×10^{-4}	1.88×10^{-5}	5.57×10^{-6}	2.35×10^{-6}		
C	1.52×10^{-5}	1.90×10^{-6}	5.62×10^{-7}	2.37×10^{-7}		
D	1.19×10^{-3}	1.48×10^{-4}	4.39×10^{-5}	1.85×10^{-5}		

Cyclic Voltammogram (2.5 wt% ZrCl₄)

Cyclic Voltammogram Comparison

Nernst Plot for Peaks B and D

Apparent reduction potential:

$$E^{0'} = -0.849 \text{ V (vs Ag/AgCl)}$$

• Average number of electrons transferred in the reaction(s):

$$n = 1.71$$

Chronopotentiometry (1.0 wt% ZrCl₄)

Summary

- An experimental setup and process has been designed to test properties relevant to the electrochemical recovery of zirconium in molten salt.
- Cyclic voltammetry has been performed on (1.0, 2.5, and 5.0) wt% ZrCl₄ in the molten LiCl/KCl eutectic salt at 500 °C.
 - Cyclic voltammograms show complex behavior of zirconium in the molten salt with presence of ZrCl₄, ZrCl₂, and ZrCl.
 - Range of diffusion coefficients in the LiCl/KCl eutectic was determined.
 - D = $2.37 \times 10^{-7} 1.48 \times 10^{-4} \text{ cm}^2/\text{s}$
 - Apparent standard reduction potential was determined for one pair of peaks.
 - $E^{0'} = -0.849 \text{ V vs. Ag/AgCl}$
- Chronopotentiometry was performed and shows complex behavior.

Summary

	Standard Reduction Potential, E ⁰ (V vs. Ag/AgCl)			Diffusion Coefficient, D (m ² /s)		Activity Coefficient, γ		
	Zr(IV)/Zr	Zr(IV)/Zr(II)	Zr(II)/Zr	Zr(IV)	Zr(II)	Zr(IV)	Zr(II)	
[2]	-1.22*		-1.12			9.6×10^{-6} *	3.4×10^{7}	
[3]	-1.064*	-1.121*	-1.01*					
[4]	-0.838		-0.722			3.081×10^{-3} *	1.05×10^{-4} *	
[5]	-1.064*	-1.121*	-1.007*					
[6]	-1.333*							
[7]	-1.1							
[8]	-1.22							
[9]						4.48×10^{-3}	1.9×10^{-4}	
[10]				1.13×10^{-5}				
[11]				1.10×10 ⁻⁷ - 4	4.53×10 ⁻⁶			
This Work	-0.849 (Effective)			2.37×10 ⁻⁷ – 1		Martinia 207 (2001)		

^{*} Values reported are at 450 ° C.

^[2] R. Baboian, et al., J. Electrochem. Soc., 112.12 (1965).

^[3] J.A. Plambeck, J. of Chemical and Engineering Data, 12(1) (1967).

^[4] R. Ahluwalia, et al., Nucl. Tech., 126 (1999).

 $^{24^{\,[5]\,\}text{A.J. Bard, "Encyclopedia of Electrochemistry of the Elements, Vol. X, Fused Salt Systems, p. 68, Marcel Dekker, Inc., New York (1976).}$

^[6] M. Iizuka, et al., J. of Nuclear Materials, 297 (2001).

^[7] T. Murakami and T. Kato, J. Electrochem. Soc., 155(&) (2008).

^[8] A.V. Bychkov, *Proceedings of the Workshop on Pyrochemical Separations*, Avignon, France, March 14-16, 2000.

^[9] R.K. Ahluwalia, et al., Nucl. Tech., 133 (2001).

^[10] D. Yamada, et al., J. Alloys and Compounds, 444-445 (2007).

Future Work

- Further analysis of chronopotentiometry data.
- Further work with ZrCl₄ at additional concentrations.
- Zirconium electrodeposition experiments with transparent setup to analyze zirconium deposit morphology.
- Experiments to optimize/maximize zirconium recovery.
 - Cathode material, operating temperature, applied potential.
- Electrochemistry experiments/analysis with UCl₃ in LiCl/KCl eutectic.
- Final phase of this work will explore the electrochemical recovery of zirconium in the presence of uranium.

Acknowledgements

- This work was performed as part of I-NERI Project 2010-001-K in conjunction with Seoul National University and Korea Atomic Energy Research Institute.
- Thanks to all those who have helped with this project including Debbie Lacroix, Sean Martin, Ammon Williams, Josh Versey, Mike Pack, Cindy Hanson, and Dalsung Yoon.

Thanks!

Activity Coefficient

Nernst Equation

$$E = E^{0} + \frac{RT}{nF} ln \left(\gamma K_{s} \right)$$

- What is the activity coefficient, γ ?
 - A factor included in order to take account of deviations from solution ideality in the liquid phase.
 - It is related to the excess Gibbs energy, G^E, the difference between the actual and ideal Gibbs energy of a solution.

$$\overline{G}^{E} = RT \ln \gamma$$
 G^E Excess Gibbs energy

• It is defined as a ratio of the fugacity of the species in solution and its mass fraction in solution times its pure species fugacity.

$$\gamma \equiv \frac{\hat{f}}{xf}$$

$$\uparrow \text{ Fugacity in solution}$$

$$x \text{ Mass fraction in solution}$$

$$f \text{ Fugacity of pure species}$$